假设$u_n>0$,$v_n>0$,且对充分大的$n$,比方说对$n\geq n_0$,有
\begin{equation}\label{eq:kill} \frac{v_{n+1}}{v_n}\leq \frac{u_{n+1}}{u_n} \end{equation}且$\sum u_n$收敛,那么$\sum v_n$收敛.
证明是简单的,我们看以下数列,\begin{equation}\label{eq:min} u_{n_0},u_{n_0+1},u_{n_0+2},u_{n_0+3},\cdots\end{equation}以及以下数列\begin{equation}\label{eq:max} v_{n_0},v_{n_0+1},v_{n_0+2},v_{n_0+3}\cdots\end{equation}我们将\ref{eq:min}的每一项都乘以$\frac{v_{n_0}}{u_{n_0}}$,变成\begin{equation}\label{eq:fuck} v_{n_0},u_{n_0+1}\frac{v_{n_0}}{u_{n_0}},u_{n_0+2}\frac{v_{n_0}}{u_{n_0}},u_{n_0+3}\frac{v_{n_0}}{u_{n_0}},\cdots\end{equation}\ref{eq:fuck}也是收敛的.结合\ref{eq:fuck},根据\ref{eq:kill},可知\ref{eq:min}也收敛(为什么?).